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Abstract. The paper proposes an atomic concept, which is an ab-
stract conceptual space. Atomicity means differentiable fundamental con-
stituents that may compose to construct formality as much as ideality,
which implies that (Form ≡ Semantics, Word ≡ Sentence, and Self ≡
Word), and consequently, the bi-directional convertibility between the
sensed analog world and the conceptual domain for constructing self-
evolving agents. The atomic concept builds on a three-perspectival on-
tology of urbanism (a theory of meaning) that standardizes a dual repre-
sentation of the atomic model, a differentiable manifold (local conceptual
simulation) and a binary hierarchical graph (long-term memory record-
ing the local simulations). The paper proposes seven abstract symmetric
dimensions for the atomic manifold, which are distilled from the natu-
ral language’s adpositions. The abstract dimensions are materialized by
a proposed chamber geometry, an algebraic-geometric structure, to rep-
resent states (differentiable atomic 3D propositions) over any point of
the manifold. These states are differentially changeable over the man-
ifold by the means of parameterizable verb (force) actions, and that
is how state-change of event structure is modelable over hierarchically
generalizable IF − THEN statements. The proposed 3D scene propo-
sitions are an abstract differentiable variant of formal first/higher-order
logic languages. The paper proposes a recursive, invariant, hierarchically
explainable Atomic Neural Network (AtomNN) as a materialization of
the atomic graph/manifold duality, and it, accordingly, reconciles the
symbolic and connectionist approaches. The AtomNN is populated by
chamber geometric atomic propositions, and consequently, it is intrin-
sically algebraic-geometric multimodal. Similarity is assessed by alge-
braic homomorphically and geometric differentially comparability, and
hence, learnable patterns are explainable. The paper promises the con-
structability of explainable AI, artificial self-aware agency, controllable
AI, biological-like backpropagation (white box hierarchical) for training
the atomic model, and, in general, AGI.

Keywords: abstract atomic conceptual space, computational cognitive
geometry, cognitive linguistics, group theory for information theory
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1 Introduction

Symbolism and connectionism are believed to be two pillars of cognitive pro-
cesses. In symbolism, predicated entities are joined by logical connectors to com-
municate knowledge, e.g., the statement “if it is raining and I’m with John, then
we will finish the research”, maybe predicated and formalized as “raining(today)∧
with(I, John) ⇒ finish(we, the research)”, and the truthfulness of such a propo-
sition may be evaluated against set-based models of joined predicates. Such sym-
bolic representation is praised for its communicative openness and its relatedness
to how human agents tend to cognize and deliberate specific entities as symbols.
This approach is practically utilized by manually populating rules, as templates,
hoping that formal manipulation of the symbolic statements may construct de-
ductive systems. Nonetheless, the lack of proper differentiable/continuous mod-
eling of the meaning of the predication and the logic operators led to the failure of
this approach in areas like learnability, knowledge transferability, and the inabil-
ity to model the analog perceptual/sensorimotor systems. On the other hand,
connectionism may readily make sense of patterns in prepared training data,
e.g. (Ẋ, Y ), using differentiable/trainable connectionist models M(X,Θ) → Ŷ .
The model’s parameters Θ are optimized to reduce and generalize the cost of
wrong predictions between Ŷ and the training Y against the fixed predefined fea-
tures X. The differentiability, and hence the trainability, of connectionist models
places it at the forefront of contemporary AI without any imaginable future of
the field without its contribution. Nonetheless, Connectionist neural models need
a large amount of data to train the black-boxed parameters Θ of the predefined
model. The training expenses, the fixed, specially-engineered input and output
spaces X, Ŷ , and their black-box unexplainability made these models brittle to
develop, use, and maintain.

In summary, the symbolism’s lack of differentiable modeling of its constitut-
ing elements, and the connectionism’s need for modeling composable fundamental
constituents made both of these approaches unexplainable. Therefore, a single
model that reconciles these two approaches and complements their shortcom-
ings with their mutual strengths may prove to be the best path for constructing
evolving artificial agents that are capable of auto-modeling the world and com-
municating over these constructed models. “Meaning” proves to be a unifying
ground of the multimodal perceptual systems, as much as of the higher cogni-
tive processes, and therefore, meaning is foundational for defining such a unifying
model.

The paper proposes an abstract atomic concept that maintains the essence
of meaning, which leads to standardizing state representation and the pro-
cesses of changing these states. The state-change abstraction is materialized
by a specifically defined geometric-algebraic structure, named chamber geome-
try, that sustains auto-defined typologies and their comparability. The proposed
modelM yields a contentious space of possibility,M(x) =⇒ Mp∈P (as a point p
of the points P of a differentiable manifold M). The model M may model any x,
as a continuous phenomenon, that includes the constituents of first/higher-order
logic, e.g., {∨,∧,¬}, but with continuous implication spaces of { =⇒ , ⇐⇒ },
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rather than the limited {T, F} of formal semantics. Additionally, the atomic
model’s propositions are abstractions of 3d scenes, and they may be quantified
with the regular quantifiers {∀,∃}. But what is meaning? And, how does the
paper proceed from that point on?

The paper adopts a three-perspectival ontology of urbanism [1; 2] to elucidate
”what is meaning?”. The ontology states that three contrastive perspectives, la-
beled rational (structural), emotional (systemic), and visual, are sufficient to
explicate all the variants of any material or conceptual entity. The rational per-
spective dictates structurality, containment, boundedness, and true/false simpli-
fications of hierarchical spatiality. The systemic perspective dictates interactivity
between attracting/repulsive forces. The visual perspective is about describing
these two perspectives by a conscious agent. We may emphasize the centrality
of the three perspectives in dictating meaning over the following axiom, which
is the first of only two axioms of the paper.

Axiom 1 (the three-perspectival sufficiency) the three perspectives, labeled
rational, systemic, and visual, may sufficiently explicate all the variants of any
material or immaterial entity, which may collectively be named as a concept,which
is labeled Con(label).

Both the rational and systemic perspectives are deemed objective, while the
visual perspective is the subjective perspective responsible for depicting and
materializing the other two objective perspectives. For example, no two sane
individuals would disagree on the structure or action of an opening door or a
moving vehicle, but describing that as fast or slow, near or far, suitable or not,
good or bad, useful or useless is a practice of subjectivity.

The three perspectives are meant to bridge language and cognition. Applying
this first axiom for modeling the meaning of a word of natural language is a good
experiment of the axiom, and it may open a novel insight into open-word classes
of natural language. For a word to mean, it has to maintain a version of the three
perspectives. Meaning that it has to maintain structure, interactivity over these
structures, and the descriptive materialization of structurality and interactivity,
which develops by an experiencing agent. Consequently, the word is a memory
device, which the paper presumes to be differentiable for learnability. A word in
language is a concept in cognition, and such a minimalistic differentiable memory
device is what the paper presumes to be the atomic concept. Therefore, for a
concept Con(label), label is a noun representing the name of the concept, and the
concept maintains the other open word classes of interactivity (verbs), spatial
structurality, and describing experiences (adjectives and adverbs). This means
that the open word classes are just variant manifestations of a word (concept),
and that is why linguists celebrate the dynamic and evolutionary aspects of
open word classes. For example, an antenna may become ”to antennaize” or
antenna-like, etc., because all of the open word classes are entwined to create
a concept. Composing concepts retrieves the proper memory about the concept
into attention, and the following lemma states such conceptual relatedness.
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Fig. 1. The proposed mathematical modeling of state-change over the atomic mani-
fold. The seven dimensions [x0-x6] are used to define the geometric-algebraic chamber
geometry for modeling the state-change on several frames (points) on the diff. mani-
fold.

Lemma 1 (relativistic semantics). any concept develops meaning by relating
to other concepts, either objectively over a spatial or interactive relatedness or
subjectively over the perceiving points of view.

We would now lay the second, and last, axiom of the paper that presumes a
symmetric world. But before doing that, we need to explicate the constituents
of the atomic concept. Although the three perspectives recognize the open word
classes as various manifestations of a concept, the adpositions’ closed word class
(prepositions and postpositions) are presumed to construct the open classes’
variants of structurality and interactivity. The other closed word classes are
either connectors, e.g. the joining operators {∨,∧,¬, =⇒ , ⇐⇒ }, which may
act as conjunctions, while pronouns are just concepts (words), e.g. the concepts of
“I”, “We”, “They”, or “It” are mere memory devices of structures, interactions,
and the experiences of describing them. In fact, the closed word classes are fixed,
barely change, and are universal amongst all the known linguistic instances.

Figure (1) illustrates the constituents of the atomic concept. The atomic con-
cept is a model of a differentiable memory device. The paper distills the natural
language’s adpositions into seven adposition dimensions used to structure both
spatiality (structurality), interactivity (directionality), describability, swarm in-
teractivity, and geometric analysis. The seven adposition dimensions are objec-
tively defined, and over them, geometric instances are populated. These geomet-
ric instances are defined by the paper as chamber geometry that encodes spatial
experiences and substantiates comparability. The chamber geometry encodes the
algebraic-geometric spatial relationships in the form of 3d spatial propositions,
joined by the smooth connectors of {∨,∧,¬}. These atomic propositions depict
states , as abstract spatial relatedness, which may smoothly change , by the
means of a force (verb) effect, and such changing shapes the differentiable atomic
manifold as a differential memory device of a concept. Distilling natural language
to depict states on a single frame, and then tracing the 3d proposition change-
abilities defines the invisible affecting forces. The capacity to model state-change
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is not limited to the event structure of actor-action-patient but may include any
entity, such as utilized instruments, environmental expectations, temporal con-
ditionality, goals, purpose, etc. Nonetheless, all these constituents come in duals,
and based on that, the following final axiom of the paper is laid:

Axiom 2 (the symmetric world) meaning manifests in a symmetric related-
ness. Any adposition dimension is represented as a group G containing opposite
adpositions. For any descriptive geometry, there is a parametrized opposite po-
lar ∈ [−1,+1]. And finally, for any action “a”, there is an undoing anti-action
“a−1”.

A group is the mathematical tool for modeling symmetry, and that is how
the adposition dimensions are modeled. All the proposed operators come in
three material, behavioral, and inferential variants, and each is dually defined
for the two inverse polars of the descriptive space. These connectives structure
atomic 3D propositions that are hierarchically defined, from simplest types to
more detailed and complex ones, using the generalizable if − then statements.
The atomic 3D propositions signify materializable states that may be used as
arguments of a verb, which is represented in the paper as the SE(3) group, and
the six rotational and translational parameters of the SE(3) verb parametrize
the arguments’ states. The infinitesimal changes in the verb parameters, the be-
havioral aspect, reflect changes on the arguments’ states, material aspects, and
the speed of such changeability is the third inferential state. Such infinitesimal
dynamics are algebraically-geometrically simulated on local points of the atomic
manifold and hierarchically recorded in the atomic graph (the long-term mem-
ory). Although the memory graph is populated by the subjectively embodied
experiences (observed infinitesimal changeability), the subjective properties of
the embodied agents may be identified. Therefore, communication between dif-
ferently scaled agents, due to the symmetric group modeling, is still objectively
defined. For example, a fly-sized robot and a jet-sized robot may unambiguously
communicate their perceived and conceived processes using the atomic modeling.
The following lemma states that invariance of content.

Lemma 2 (the invariance of meaning). the meaning content of the struc-
tural configurations and the behavioral interactivity is invariant to the different
viewpoints’ materialization.

Related Works

Conceptual spaces: Conceptual spaces are proposed by Gaerdenfors [3; 4] to
unify the symbolic and sub-symbolic representations. It proposes fundamental di-
mensions to represent the perceptual realm, over which convex geometric spaces
are laid to represent properties, domains, and concepts. Conceptual spaces have
promising applications [5; 6], and they are deliberated by Lieto et al. [7] to unify
cognitive architectures. Nonetheless, the proposed concrete dimensions are man-
ually defined to populate physical perceptual phenomena, such as colors, and as
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such, they are unexplainable and are restricted to modeling perceptual phenom-
ena. The paper closes this gap by proposing group-based, contrastive, abstract
dimensions of a smooth manifold. The proposed seven adposition (preposition
and postposition) dimensions distill and consume the known adpositions of natu-
ral language. Similar to conceptual spaces, the proposed chamber geometry uses
convex 3d balls and vector dot products for comparability, and, hence, for classi-
fication, pattern recognition, and learning. Additionally, conceptual spaces may
model event structures, but the atomic concept models conceptual propositions,
which are algebraic-geometric abstractions of 3d scenes, and this enables the
atomic concept of modeling state-change of the materialized perception and the
immaterial ideal all alike, and in encoding (evolved learning) spatial experience.

Adpositions, language, and cognition: The role of adpositions in explicating se-
mantics has been strongly debated by major linguists, cognitive linguists, and
geometric cognitivists [8; 9; 10; 11; 12; 13]. For example, Talmy and Langacker
[8; 9; 10; 11] associate semantics with the closed-word classes that lay the seman-
tics structure, while open-word classes may maintain their meaning by their in-
terrelated networking over the numbered structures offered by adpositions, which
are used in modeling event structures. Similar to the paper’s orientation, adpo-
sitions have been proposed by Chilton to equally represent the material (model-
ing) and the ideal (metaphorizing) by the Spatial-temporal structures offered by
adpositions [12]. Nevertheless, the semantics of adpositions and verbal behav-
iors are laid out using concrete geometric examples, making them only suitable
for communicating theorizations and ideas but not for knowledge transferabil-
ity (generalization and analogical/similarity matching). The proposed atomic
model surpasses this concreteness limitations by offering abstract topological
seven dimensions, over which the differential modeling of chamber geometry is
trainable, which opens the door for both algebraic homomorphic and differential
scalar comparability.

Machine learning and AI: LLMs are at the forefront of revolutionizing contem-
porary AI. LLM transforms the fixed vector embedding of a predefined set of
tokens. LLMs maintain attentive mechanics for context-based transformations.
The LLM’s inputs, outputs, and latent spaces are embedded in Euclidean spaces,
which implies that measuring distances between different vector representations
is the way to express similarity versus polarity. Such distance measurement re-
flects the highest level of abstraction that misses the wealth of content (meaning-
based) expressiveness that may be otherwise available by the atomic concept’s
seven adposition dimensions and the comparable differentiable chambers geom-
etry. Additionally, the black-boxed vector embedding and the trained weights
of the transformation matrices imply unjustifiable and unexplainable modeling,
which is presumed to be compensated by the atomic concept. Furthermore, the
memory-associative (auto-completion) architectures, such as Hopfield networks
and Boltzmann machines, minimize the energy function for the network to con-
verge to a local minimum, as differential attractors of memorized Patterns of
states of a trained manifold. Nevertheless, patterns themselves are not explain-
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able, and the atomic model promises to justify the trainable parameters of any
pattern that is trainable over the atomic manifold.

Paper Structure The atomic concept is a mathematical model that recog-
nizes the symmetry found in the natural language’s adoptions and distills such
symmetry in seven dimensions used to model the structure and interactivity of
a smooth manifold. The differential atomic manifold is populated by 3d scene
propositions, constructing what the paper names chamber geometry. Based on
that, the paper defines the mathematical model and proposes it as a 3d scene
abstract language that explicates lingual/cognitive variations of any concept.
And accordingly, the paper first introduces the model as a graph, in section (2),
to outline the state-change memorized cognitions. In section (3), the bulk of the
paper is laid out to describe the atomic manifold of the proposed descriptive
chamber geometry. In section (4), learnability is deliberated, before closing the
article with the discussion and conclusion sections.

2 The Atomic Model as a Graph

One of the influential contributions of the paper is to dually represent the atomic
concept by a graph and a differentiable manifold. That is because meaning unifies
the graph representation and the differential manifold, which leads to dually
manifesting a differentiable graph as much as a networked discretization of
the Manifold. But what is the benefit of such dualistic representation? Memory
stores a large number of atomic propositions (3D scene or inference propositions).
The propositions may be coming from different sources, e.g., sensed analog ma-
terials of 1D/2D manifolds (sounds and images), experienced 3D manifolds, or
atomic-parsing of lingual statements, but they all encode the same state-change
content represented by the atomic propositions. Retrieving suitable propositions
for further processing in any given context is a crucial process that may otherwise
render the memory system useless. The atomic graph supports global top-down
searching while the atomic manifold supports local bottom-up navigation, and
both of these searches complement each other for optimal local/global searching.
Additionally, the atomic graph may fulfill the long-term memory needs, while
the atomic manifold may fulfill the simulation needs of other memory types, e.g.,
working memory and procedural memory. Finally, merging the two approaches
would fulfill the needs of the other known memory types.

The atomic graph is a hypertree, a variant of the tree graph. It records
the hierarchical if − then statements along with the speed of transition of one
statement to another based on the related verb parameterization. The graph
G = {V, E} is defined by the set of vertices V connected with the set of edges
E. The atomic graph maintains two versions of vertices, Vsim for local simulation
of verbs (stored submanifolds of the atomic manifold), and Vif as labeled sets
of if − then atomic propositions, and both are named nodes. Each Vif node is
labeled by the condition of the if(conditioni) and the node contains the con-
clusions of this conditionality then(conclusionsi). Both the conditions and the
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conclusions are atomic 3D propositions. Tree graphs are free of cyclic connec-
tions, and the atomic hypertree is the same. The if(condition0) starts a path
of the atomic graph, where condition0 is the simplest type that starts the path,
and all consequent nodes on that path extend the complexity of the constituents
of the prior conditional statements.

The atomic graph may be visualized as patches of atomic neural networks,
see Section (4.3). It maintains the capacity of storing several manifolds, e.g.,
two atomic manifolds, one to model changeability and another for modeling the
attentive system. The attentive manifold may model the speed of the flow of
thought associated with the atomic manifold. These related speeds are encoded
on the edges of the atomic graph. In the memory management section, see Section
(4.4), after covering the atomic manifold and the atomic propositions, the node
and edge types are represented in more detail.

3 Defining the Chamber Geometry (the smooth
descriptive comparative geometry)

It is named “chamber geometry” because it is considered a materialization of
the mathematical sets. In the heart of the chamber geometry is the hierarchical
type system that substantiates the generalized materialization of set belonging
that suits the needs of perceptual and cognitive systems alike. The conditions
of set belonging and the features of entities belonging to the materialized set
are defined by a proposed if − then operator. The atomic type system builds
on seven symmetric dimensions and their cross-products that are distilled from
lingual adpositions. These seven dimensions characterize smooth manifolds rep-
resenting position (SE(3) group), directionality (SE(3) group), scalar polarized
descriptive bounded domains γ = [−1,+1], and bounded variants of vector field
segmentation or spatial solids generating vector fields. These are believed to be
the bare minimum needed to model any system, let that be material, immaterial,
or modeling the thinking process itself (meta reasoning). These basic dimensions
may be mathematically joined by different operators {∨,∧,¬, =⇒ , ⇐⇒ } to
construct the atomic propositions (3D scene manifold) that may dually model
constrained and allowed spaces.

The atomic concept is an interdisciplinary model that utilizes minimalistic
notions to unify what otherwise are considered disparate fields. The consequence
of such interdisciplinarity is the use of special terminology adopted for specific
intentions, and to avoid disorientation the paper rigorously defines any specially
used terminology when needed.

Section structure: The section starts by introducing the mathematical abstrac-
tions of the seven dimensions and their cross-products, which collectively are
named “adposition dimensions”. Following that the chamber geometry is defined
as instantiated materializations defined over the abstract adposition dimensions.
Joining these instantiated geometries by the connectives {∨,∧,¬, =⇒ , ⇐⇒ }
constructs the 3D scene propositions, and building on that the type system is
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defined along with its hierarchical, comparative, and convertible characteristics.
The deductive system is explicated as a geometrical and algebraic necessitated
implications of any 3D proposition. Finally, the if − then operator is defined
before the section closes by a representation of the atomic manifold that is syn-
chronized with the proposed atomic graph’s representation.

The reader may skim this section during the first reading by gaining a basic
understanding of the three versions of the connective operators, atomic hierarchi-
cality, type convertibility, the nesting if − then statement, and the type system,
as a prepartion for the next learnability section, after which, the intricacies of
these operators may be more appreciated.

Smooth and finite groups are used extensively throughout the paper. A math-
ematical group is a fundamental structure in abstract algebra that captures the
idea of symmetry, transformations, and operations that can be reversed. A group
G is a set equipped with two operators {·,−1}, and a neutral element (the iden-
tity e). The two operators are closed (there is always an element of G satisfying
any formula) and associative (functional compositionality). Any group may act
on a set (G-set) or a model (G-model) by permuting its elements and partition-
ing the set elements into orbital equivalence classes. In a smooth group, the two
operators are smooth as well.

3.1 Defining the Adposition Dimensions

Adpositions are a main class of closed word classes. Its foundational contribution
to structuring semantics equally spans all known natural language instances, and
cognitive linguistics recognizes their role in structuring both higher cognitive and
perceptual systems alike. Consequently, the paper proposal for utilizing adposi-
tions as dimensions of the cognitive manifold may be supported by a wealth of
neurological, cognitive, and linguistic evidence. Nonetheless, using adpositions
as dimensions is challenging because adpositions are rich in their polysemic con-
tent. For example, the prepositions “Over” is investigated to signify more than
forty-one meanings. The paper resolves such ambiguity by stripping adpositions
down to pure mathematical representations of the semantic quanta offered by the
three perspectives. The combination of these fundamental mathematical repre-
sentations constructs adposition phenomena that unambiguously represent any
specific sense of any adposition of any natural language.

The paper distills the adpositions into seven abstract representations. The
seven dimensions are believed to suffice the needs of any modeling scenario, as
would later be used to construct rich variants of the atomic propositions. The
seven dimensions are symmetric and they grasp the notions of:

– X0 Surroundedness: it models position in a relative space. Semantically,
relative objects are located on the surface of a ball.

– X1 Includeness: it models causality and reasoning, it is a materialization
of the conditional set belonging, and it models the hierarchically nesting
if − then propositions.
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Fig. 2. different exemplar geometric instantiations of the types defined over the adpo-
sition dimensions

– X2 Nearness: it models relative comparability between concepts. Learnability
builds on the comparability of this dimension.

– X3 Directionality: it models relative directions in space as vectors pointing
from the origin of a ball to a point on its surface.

– X4 Directional relatedness (modeling swarms): it models relative relatedness
between different directions.

– X5 Spatiality Directionalized: both X5 and X6 are meant to analyze geo-
metric entities, e.g., curves and surfaces, and vector fields as part of vision
streams or geometric analytical purposes. X5 approximates curves or sur-
faces using different-sized balls, B(r, p), that may be mathematically mod-
eled using Fourier transforms, signal domain, which may be a variant of
circle-approximated curves. As a result of X5 analysis, geometry-generated
parallel/normal vector fields are derivable.
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– X6 Directionality spatialized: it segments vector fields into rebelling/contracting
regions using complementary processes to X5

These seven variations are deemed fundamental for modelling any phenomenon.
In addition to these seven dimensions, their respective cross-products, e.g., X0×
X4, define types by their own. For example, colors, temperature, speed, swarms,
etc., are represented as fundamental native types (inseparable cross products).
These types are the basis of the paper’s proposed hierarchical type system (see
Figure 2). Any atomic proposition, no matter how complex it may be, is con-
vertible to any of the seven adposition dimensions or their cross products.

The Abstract Mathematical Representations: All seven dimensions rep-
resent symmetry between two related entities. For example, if a is at the south
of b, then b is at the north of a, and the same applies for the rest of the dimen-
sional typologies. The mathematical structure that models any form of symmetry
is known as a group. The paper employs SO(3), the special orthogonal group,
and the cyclic group C3, acting on a SO(3) × SO(3) × SO(3) space, to model
positional, directional, and inclusion dimensions. Nonetheless, specially defined
groups are needed for modeling the descriptive perspectives.

Dimension X2 (nearness) is dedicated to predicated descriptions, and based
on that, all its elements belong to the [−1,+1] space located between the two
extreme describers −1 and +1. This dimension is foundational, as the atomic
learnability classifies concepts based on the X2 predicted comparability. The
paper dedicates a group, named Gdescription or in short Γ , for this dimension. For
any element a ∈ [−1,+1], the inverse of that element is a−1 = −a. Nonetheless,
to guarantee the closer property of the group’s binary operator, the addition
operator is defined as: ∀a, b ∈ Γ, a+b = max(a, b)+|a−b|/max(a,b). Every notion in
the paper comes in dual, and in the learnability section the dual of the max(a, b)
switches to min(a, b), and the binary operator may be reinstated as: ∀a, b ∈
Γ, a+<b = min(a, b)−|a−b|/min(a,b). The two operators ∧< and ∧> are dedicated
to these two variants and are described in more detail in the chamber geometry
section.

The Γ group is utilized further in dimensions X5 and X6. The balls used
to approximate the X5 dimension may be modeled as SO(3) × Γ . X6 may be
modeled as SO(3)×Γ×Γ , as the SO(3)×Γ models the balls containing regions of
vector fields, and the last Γ defines how attracted-rebelled the vectors contained
in each ball, resulting in the final representation SO(3)×Γ ×Γ of X6. Both X5

and X6 are best modeled using Fast Fourier Transform (FFT) for analyzing the
geometries perceived by the vision system or abstracted by a cognitive system.
The changeability of the seven dimensions represents the deductive system, and
the seven dimensions, along with their changeability, may be formalized over the
following definition:

Definition 1 (the adposition dimensions). the seven adposition dimensions
may be modeled, along with their changeability, using the following symmetric
structures:
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– X0 Surroundedness: the abstract model is SO(3)Pos, and the changeability of
this dimension is ∆P = (∂p0, ∂p1), the two dimensions needed for navigating
the surface of a ball, two DOF.

– X1 Includeness (containment): this dimension is the most sophisticated as it
materializes reasoning and the hierarchical if − then statement. It is mod-
eled by a cyclic Cn=3 group action over continues spaces by discretizing them
into three subspaces based on the three elements Cn=3 = {1, ι, ι2} with the
relators of ι−1 = ι2 and ι3 = 1. The neutral element 1 represents the bound-
ary (the invariant condition of the if(1) statement), while ι and its inverse
ι−1 represent the insideness and its counter outsideness. The paper dedi-
cates a specially defined group isomorphic to the Cn=3 named Gif , which,
although finite, has elements that are compact continuous subgroups. The
neutral element 1 is SO(3) × (+1), which is the condition of if , then is
dually represented by ι = SO(3)+ × (−1) and ι2 = (SO(3)− × (−1)). The
changeability of this dimension is ∆Gif = (∂1, ∂ι, ∂ι2).

– X2 Nearness: the proposed group for modeling this dimension is Γ , and the
its changeability is ∆Γ = (∂γ0) , one DOF.

– X3 Directionality: the abstract model is SO(3)Dir, and the changeability of
this dimension is ∆D = (∂d0, ∂d1, ∂d2) , three DOF. Therefore SO(3)Dir

semantically is different from SO(3)Pos.
– X4 Directional relatedness (modeling swarms): the abstract model is (SO(3)×

SO(3)), and the changeability of this dimension is ∆(D×D) = ((∂d0, ∂d1, ∂d2)×
(∂d0, ∂d1, ∂d2)), six degrees of freedom.

– X5 Spatiality Directionalized: the abstract model is (SO(3) × Γ ), and the
changeability of this dimension is ∆(SO(3)×Γ ) = ((∂r0, ∂r1, ∂r2)× (∂γ0)),
, four DOF.

– X6 Directionality spatialized: the abstract model is (SO(3)×Γ ×Γ ), and the
changeability of this dimension is ∆(SO(3) × Γ × Γ ) = ((∂r0, ∂r1, ∂r2) ×
(∂γ0)× (∂γ0)), five DOF.

Exemplar Abstraction Compositions for Modeling Adpositions’ Phe-
nomena: Composing the adposition abstract typologies may grow in complexity
to model any phenomenon. Figure (3, A and B) represents the abstract typol-
ogy of the adposition ON along with different instantiations of the same type
to reflect different interpretations. These instantiations are defined in the next
section as the chamber geometry.

The “ON” phenomenon may be modeled as a spatial relatedness between
two elements over the positional SO(3)Pos group along with directionality of
support, modeled by the SO(3)Dir group, and the value of that supporting load,
modeled by Γ . Therefore, saying that a is on b always maintain the typology of
SO(3)Pos ×SO(3)Dir ×Γ but may be instantiated to reflect specific variants of
“On”, e.g., a is ON a table b, a is ON a wall b, or a is ON a ceiling b. Figure
(3, C) summarizes the possibilities for modeling the different natural languages’
adpositions classified according to their semantics.
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Fig. 3. A) the typology of the ON proposition. B) three different instantiations of the
same typology of ON for its meanings by descriptive comparing (chamber geometry)
the two entities a and a′ over SO(3)pos × SOdir × X2(scalar − nearness). C) exem-
plar utilizations of the abstract adposition dimensions for assigning semantics to the
different natural language’s adpositions.

3.2 Defining the Chamber descriptive geometry

Classic geometry studies the measurements of shapes embedded in Euclidean
spaces, including distances, angles, area, and volume, as well as their similar-
ity/matching conditions, and their transformative operations, such as scaling,
rotation, and stretching. Geometric variants may include Euclidean geometry,
which is axiomatized over five axioms, and non-Euclidean geometric variants,
which forget any of these axioms. Nonetheless, Modern geometry theorizes these
scalar attributes as functions defined over algebraic systems, which implies in-
trinsically defined geometries, e.g., Manifolds, that are intrinsically well-defined
without the aid of extrinsic embedding in Euclidean spaces.
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The proposed chamber geometry is an instantiation of the abstract typologies
defined by the adposition dimensions (see Figure 2). For example, a ∈ SO(3)Pos

may represent a specific direction a, e.g., north, or a ∈ Gif× where a may de-
scribe a specific statement Gif as fast or slow Γ . These instantiations may be
furtherly materialized, e.g., as balls B(p, r) or as linear distances, as measure-
ments of physical entities, which may be constructed as 3D scenes to realign
the atomic propositions with gamified simulation engines. This minimalistic def-
inition supports physical modeling, e.g., textures, shapes, geometric patterns,
complex 3D scenes etc., and rich mental representation. This abstract definition
of the chamber geometry represents comparable states, which are the core of the
atomic learnability.

The changeability of these states, which may be dually constrained vs. al-
lowed spaces, consumes what the paper introduces as the deductive system.
For these states to change, they are coupled with forces, or linguistic verbs.
The paper represents forces by SE(3) groups, SE(3) = (R τ

0 1 ), where R is the
special rotation group SO(3) and τ ∈ R3 is the translation/position vector.
Therefore, the SE(3) group, or any of its discrete or continuous subgroups, may
be parametrized by six degrees of freedom (DOF), and that is how the pro-
posed atomic manifold may be parametrized (navigated). In the next section,
the operators used to compose complex atomic models are defined along with
the deductive system and the hierarchical typology, which is a main factor of
the nesting if − then stamens and the self-evolving atomic learnable models.

3.3 The Atomic Connectives, their Convertibility, and the
Hierarchicality’s Definitions

The material perspective is represented by the cross product of the proposed
adposition dimensions (3D material propositions). The behavioral perspective is
represented by the SE(3) group, which parametrizes the atomic manifold by its
R rotation and τ translation subgroups (3D behavioral propositions). Finally,
the inferential perspective observes/examines the relationship between these two
perspectives and the speed of their interrelated changeability (3D inferential
propositions). These three variations collectively construct the atomic proposi-
tions. The inferential perspective is represented by the Γ group, specifically the
X2 dimension, which is not surprising, as it is the perspective responsible for
conducting descriptive processing, the primary role of any agency.

These three variants come with their own modeling spaces, and each requires
a special variant of the connective operators • ∈ {∧, ∨, ¬}. The material and
behavioral perspectives shape reality that is observed and experientially embod-
ied by the inferential perspective. Therefore, the three perspectives may configure
the even structure and its actors, verbi(argument0, argument1, · · · , argumentn).
The verb verbi belongs to the behavioral perspective, while its arguments argumentj
belong to the material perspective. Adverbially describing the verbi or adjec-
tively describing the argumentj turns the event structure into a 3D scene em-
bodied assessment, with the modeling of the atomic describability. Therefore,
the connective operators • come in three versions, which are • for the material
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space, •⟳ for the behavioral space, and • 7→ for processing the inferential space.
These connective variants are defined as follows:

Definition 2 (the atomic connectives). all the three perspectives are repre-
sented by mathematical group structures {G, +, −} and the connective {∧, ∨, ¬}
operators are defined using the group operators as follows:

1. the ∧ connective maps to the + binary operator of each corresponding group.
2. the ¬ connective maps to the − unitary inverse operator of each correspond-

ing group.
3. the ∨ connective needs an argument, ∨(conditioni), and it returns the ∀(conditioni)

quantifier if the condition is met by the two operands, the ∃(conditioni) if
the condition is met by any of the two operands, and ∄(conditioni) if none
of its operands meet the condition.

It is important to note that the atomic proposition of an embodied event
structure requires a buffer of a 3D scene that may be, in parallel to the algebraic-
geometric processing, gamified over any gaming engine. The capacity of the event
structure buffer may differentiate the specs between different agents. Another im-
portant note is that using the group representations for defining the connectives
would imply that the atomic connectives {∧, ∨} are non-commutative, but
still associative. Join negation ¬ ∨ (conditioni) is ∨(¬conditioni), and meet
negation ¬(a0 ∧ a1) is (¬(a1) ∧ ¬(a0)), because ∧ is not commutative and its
parallel group operation −(a0 • a1) is (−a1 • −a0).

The Equivalence ⇔ and Implication ⇒ Connectives: These two op-
erators are foundational to the first/higher-order logic, and they are the main
factor for formulating language semantics using the functional representation
of these languages. The atomic implication ⇒: (observeri, Pj) → Pj′ expects
an observeri and atomic propositions Pj as arguments, and translates Pj to
the atomic Pj′ proposition, as assessed by the observer observeri. The equiva-
lence ⇔: (observeri, Pj , Pk) → (R3 ∈ Perspectivel∈{0, 1, 2}) expects an extra
Pk argument, which is the atomic proposition that is compared to Pj by the
observeri. The comparison returns the closeness between the two atomic propo-
sitions for each of the three perspectives. These two operators are foundational
for communication between different atomic robots, e.g., a fly-sized robot with a
factory-arm-scaled robot. They require initial guessing about the bodily proper-
ties of the observeri, and they may be accurately transformed from an observer
to another because of the group modeling of the seven adposition dimensions.

Defining the Convertibility of the Atomic Connectives: Behavior and
state conceptually exist because they can be observed by an experiencer, and
observing implies the describability of these two interrelated domains. The de-
scription is the observed infinitesimal changeability of an atomic proposition

∆P = (∂p0, · · · , ∂pn) measured by the speed of change
−−→
∆P = Pt+1 − Pt.
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Fig. 4. A) the three versions of hierarchicality. B) the convertibility between the six
perspectives and the descriptive X2 dimension.

Nonetheless, these infinitesimal vectors are scaled appropriately as group ele-
ments of Γ , which is the group used by the paper to represent the inferential
perspective. Therefore, the types of behavior (verb) and states (verb arguments)
have to be convertible to the Γ group, the way the third inferential perspective
does, which may be defined as follows:

Definition 3 (the atomic convertibility). the group representation G of the
seven adposition dimensions may be converted to the Γ group by defining the
following φ : G → Γ map:

1. select an extreme element g1 ∈ G, and its inverse g−1
1 ;e.g., right and left,

front and back, or up and down; and map them to the extreme element of Γ ,
φ : g1 → +1 ∈ Γ and φ : g−1

1 → −1 ∈ Γ .
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2. select a group element g ∈ G that lies between the two extremes, e.g., for
right and left select front or back, and map it to the identity element e,
φ : g → e ∈ Γ map.

3. measure the distance, Euclidean or geodesic, for any group element gi and the
extremes, d = min(dist(gi, g1), dist(g

−1
i , g−1

1 )), and normalize it norm(d)
on norm(d) ∈ Γ in the direction of the least extreme φ : gi → [−1, +1] ∈ Γ

In reality, a right-handed person may have a different convertibility system
than a left-handed person, and so a robotic agent is expected to have a unique
convertibility system matching its body’s configurations. Each of the three vari-
ants of the atomic connectives {•, •⟳, • 7→}, see Definition (2), are further dually
defined, e.g., {•<, •>}, to match the binary operation of the Γ group, see Defi-
nition (1) and Figure (4, B).

Defining Hierarchicality: Hierarchy is the foundation of the generalization
and abstraction processes, two main traits of human intelligence. Similarly, for a
recursive atomic concept to be meaningfully explainable, it has to exist in fairly
simple contexts, and then, it ascends in complexity by explicating more details
one step after another.

Similar to the atomic connectives, there are three interpretations of hierachi-
cality, which are the material hierarchy id defined syntactically over the atomic
propositions (part-to-whole), the behavioral hierarchy is defined over a series
of behaviors affecting a single type of states where the effects propagate over
the path of actions, and finally, the inferential perspective’s hierarchy as a mon-
tonically boosted, or inversely decayed, infinitesimal changeability over a single
behavioral or material type, see Figure (4, A).

In all three variants, an effect of a starting point (the root) consistently con-
tinues to propagate through a series of its successors, and such a hierarchical path
ceases to exist once that propagated effect diminishes. The three interpretations
of the path of hierarchical series are defined as follows:

Definition 4 (the atomic hierarchicality). Hierarchy is an effect E that is
initiated and influenced by a source, the root of the hierarchy h0 ∈ H, and
consistently propagates to its successors. The hierarchical path H ceases to exist
once the effect is no longer observable. The three perspectives’ interpretation of
hierarchicality is as follows:

1. the material hierarchy: for any given atomic proposition, P 0 = (p0 • p1 •
· · · , • pn), where • ∈ {∧, ∨, ¬, ⇔, ⇒}, and all their variants, see Figure
(4, A.1), hierarchy H is a series of recursive substitutive process by defining
a map φ that adds more details by substituting any symbol pi by an atomic
proposition, φ : pi → pi × (pi0 • pi1 • · · · , • pim), which yields a new
more detailed atomic proposition P 1 = (p0 • · · · • (pi → pi × (pi0 • pi1 •
· · · , • pim) · · · • pn), where the new added parameters of pij are dependent
on the pi parameters. The substitutive process may go on, in such a detailing
manner, from proposition P 0 to P k.
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2. the behavioral hierarchy: given a state s, or a state derived from it using ma-
terial hierarch, the hierarchy H is a series of n verbs, verb0(s) 7→ verb1(s) 7→
· · · 7→ verbn(s), where each verb verbi maintaining the effects of its prior
nodes verb0–verbi−1, see Figure (4, A.2).

3. the inferential hierarchy: either fixing a state s and constructing a behavior
hierarchy, or fixing a verb verbi while changing its arguments,collectively
named d, a single describer type △ constructs the hierarchy H as a series of
n describers, △0 (d) 7→△1 (d) 7→ · · · 7→△n (d), where each △i+1 (d) >△i (d),
see Figure (4, A.3).

The material hierarchicality may be used to define the behavioral hierarchy,
while the inferential hierarchy may be defined over any of the other variants of
hierarchicality. These simple hierarchical variants, which build on certain fixed
arguments, are used as building blocks of the atomic learnability section, which
hierarchically explains a relationship between any two concepts. The semantics
of these hierarchies is grounded using the if−then proposition, as detailed next.

3.4 The Hierarchically Nesting (if − then) Statement, the
Deductive System, and the Type System

A verb relates its state-based arguments (the arguments and adjuncts), and
it parametrizes the event structure based on its subgroups’ translational and
rotational parameters [14; 15], see Figure (5). The if − then statement spans
beyond the boundary of a single event structure, and in doing so, the if − then
statement interlinks the different event structures’ constituents. Therefore, the
if − then statement creates the meaning of concepts by constructing relativistic
networks of contextualized concepts, see Lemma (reflemma:relativistic).

The if(conditioni) and its dual detailing conclusions, then+ (conci) and
then− (conci), is a practice of the atomic hierarchy. Using Definition (4), it
is if(P 0)then(P 1). Meaning that knowing the condition conditioni, then the
conclusioni is a possible detailing, or else, knowing the conclusion conclusioni,
then the condition conditioni is a possible abstraction. These hierarchically re-
lated possibilities should behave similarly on a much deeper hierarchical path
of if − then detailing propositions. The use of the nesting if(conditioni) 7→
{then+(conclusioni), then

−(conclusioni)} is used extensively in the next learn-
ability section for modeling and querying local conceptual simulations of event
structures.

The Deductive System: The proposed deductive system is the three inter-
pretations of hierarchicality. It represents the three interpretative variants of the
proof systems that may be grounded by physics and mathematics. For physics,
fixing parameters of an experimentation to collect substantiated results may be
compared with the fixed states for behavioral hierarchies, or the fixing of ei-
ther behaviors or states for defining instances of inferential hierarchies. Similar
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Fig. 5. The eleven classes of verb structures populated by atomic propositions as verb
arguments.

arguments may be applied to the mathematical axiomatization system of math-
ematical structures, which may yield interesting results concerning how human
agents understand mathematics.

The proposed atomicity defines relations between different entities using the
atomic type system, the seven adposition dimensions, which are symmetric.
Nonetheless, any references that may be deemed asymmetric would still lever-
age the symmetry of the atomic model. Part of the assumptions of the proposed
atomicity is that the seven adposition dimensions and their cross products may
cover all the topics needed to model any material or immaterial entity that may
be otherwise thought to be asymmetric.

The Type System: The atomic propositions model event structures, formal-
ized semantic modeling of natural language. The proposed 3D atomic connectives
· ∈ {∧,∨,¬}are meant to model the material states as arguments Argsn∈N of
verbs, e.g., verb⟳(Argsn∈N ) [14; 15], see Figure (5). The behavioral and infer-
ential atomic propositions use the connective variants ·⟳ and ·7→, which may
be semantically represented by describe7→(verb⟳(s, o0, o1, argsn∈N )). Based on
that, the types and their respective atomic connectives are as follows.

1. the 3D material atomic propositions: they are represented by the seven ad-
position dimensions and their direct cross products to model states that are
used as arguments for verbs. They use the · connectives.

2. the behavioral atomic propositions (verbs): although any verb⟳(Argsn∈N )
is abstractly represented by an SE(3) group to parametrize its arguments,
the verb⟳ type is defined by its arguments, as the role of the verb is to link
and parametrize different materialistic states. The ∧⟳ connective expects
two verb operands of the same type.
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3. the inferential atomic propositions (descriptions): the describe7→ type com-
pares the speed of change of the parametrized event structure, based on
subjective observation or experimentation, and normalizes this comparison
over a [−1,+1] scale. Or in other words, describe7→(verb⟳(st, ot, · · · )) 7−→
verb⟳(st+1, ot+1, · · · ). The ∧7→ connective expects two operands of the same
type.

4. the three versions of hierarchicality: they are composed under the same roles
of their respective atomic connectors.

5. the nesting if−then statements: they are responsible for the invariant binary
classification of the learnability space.

6. finally, the query types q ∈ Q: they are the only types, additional to the basic
adposition deimnsions of Figure (2), that may define direct cross products
q = (C0 × C1) of two concepts in response to queries. In the next learnabil-
ity section, approaches for automatic type definitions for latent conceptual
spaces are proposed.

3.5 The Atomic Manifold’s Modeling of State, Change, and
Describability

Equation (1) represents the set of concepts, which may be compared to LLM’s
tokens, related to each other. Over this matrix relatedness, atomic propositions
may be structured between any two concepts. Figure (6) depicts a visualiza-
tion of how such atomic propositions (states) may be dynamically changed by
parametrizing verbs, which themselves are different manifestations of the set of
concepts. The possibility that the changeability of different hierarchical states
may further substantiate different typologies signifies that the atomic manifold
may be so big that it can’t exist as a global phenomenon, as the whole known
and yet to know sentence variants may be modeled over the state-change of the
atomic manifold.

Fig. 6. an illustration of the components of the atomic manifold and its verb’s paramer-
ization to smoothly navigate across the memorized states



Draft: invited for the “Cognitive Systems Research (CSR)” Journal 21

AManifold =

a1 a2 an
a1 0 F 0

ch0
0

a2 F 0
ch0

F 0
ch1

F 0
ch0

. . .

an 0 F 0
ch1

0




Aconcepts︷ ︸︸ ︷
(1)

Therefore, the atomic manifold only exists as a local phenomenon, and these
local phenomena are recorded over the hierarchical atomic graph, which certifies
the atomic graph as a differential graph memorizing snapshots of the local rea-
soning. Therefore, generalization or detailed specification are equally treated as
a local phenomenon, which implies the recursive reality of the atomic concept.
In fact, the whole manifold is a concept, or equivalently, a linguistic word, much
like a self. Learnability of the next section shapes the locality of the atomic
model, and a better definition of the atomic manifold is given in the coming
“algebraizing the atomic manifold” subsection.

4 Atomic Learnability

Classification , regression , and clustering are the main tasks machine
learning (ML) algorithms perform. ML builds on two consecutive processes. The
first is learning the weights of a model, while the second is applying the learnt
model in inference applications. Nonetheless, the two processes are unrelated as
the inference process is unaware of the learning process, and there is no mutual
developmental interaction between them.

Contrary to that, the atomic concept conducts local algebraic-geometric
simulated comparability between two atomic statements, and as a result of that
comparison, the proper explainable classification is defined, the long-term atomic
graph memory is shaped, and the trajectory for a better, closer value may be
guessed for infinitesimal enhancements. This classification is regressively defined,
and classification and regression are entwined. To compare two atomic concepts,
1) they are assumed to be of the same type (typological requirements), and
then, 2) to be descriptively scaled, as a predicate, for more (greater) against less
(smaller) comparability.

The atomic modeling builds on representing materiality/conceptuality, using
the seven adposition dimensions types and the chamber geometric materializa-
tion (3D atomic propositions), as contributors of an event structure. Conse-
quently, similarity is analogically assessed between two atomic concepts based
on their semantic roles in event structures. Nevertheless, event structures imply
the ongoing dynamics of change and interactions, and consequently, tracking how
concepts are related over the course of behavioral processes constructs explain-
able relationships between any concepts involved in that course of actions. Based
on that, the following two mechanisms are facets of the atomic learnability:
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Fig. 7. A) atomic learnability defined as the best explainable paths over the temporal
domain that link the starting state (State0) to the goal state (StateGoal). B) the atomic
neural network (AtomNN) defined over the invariant planning and execution domains.
C) the two methods for defining the network of queries of the AtomNN. D) the AtomNN
architectures building on the predefined set of queries or auto-defined queries.

1. similarity conditions: given two concepts, what are the conditions needed to
make them similar? Or inversely, what are the consequences of considering
any two concepts similar?

2. an explainable path of actions for linking two states: given two concepts,
what are the possible paths of actions that explain a relation between these
two concepts? Or inversely, given a path of actions that explains a link
between two concepts, what are its implications?

Therefore, stating that (concepti ≡ conceptj) , given the condition that
explanationk, or the two concepts are related (concepti) → explanationk →
(conceptj), because of (→ explanationk →), are a conclusion of an atomic
reasoning (searching) process, see Figure(7, A).

Although these two tracks may sound different, both of them are merely an
explanation of a binary relation between two states, in the first it is equivalence,
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and in the second it is context-based relatedness. Meaning that atomic learnabil-
ity explains a relation between a starting state State0 and a goal state Stategoal,
and with constraining conditions, (State0 |Condition0) → explanationk →
(Stategoal |Conditiongoal).

For example, a hammer may be related to a chair over the paths of: a hammer
is used to nail a chair, a hammer may be put on a chair, or the hammer’s handle
is made from the same chair’s material, etc. although all of these explanations are
valid, some may give better explainability than the other in a specific context.
Similarly, a car and a boy may be deemed similar under the description of speed,
as both coexist in the same building, etc. The rule is that a relationship linking
two concepts is explainable.

This simple notion of explaining a link between two states may prove to an
efficient reasoning approach that unifies a multitude of cognitive and thinking
processes, e.g., planning, storytelling, criticizing, discovering, searching, mimicry
learning, puzzle solving, one-shot learning, spatial navigation, or designing.

In the following subsections, a simple atomic proposition, e.g., a verbi state-
ment, that relates the two states is proposed as the root for a consequent detail-
ing process for constructing explainable paths relating the two states. Following
that, an Atomic Neural Network (AtomNN) is proposed, and an evolutionary
optimization process is proposed to hierarchically train the differential parame-
ters of the AtomNN’s hierarchical explanation. Constructing and querying the
AtomNN is conducted invariably over a nesting if − then statements.

4.1 Atomic Learnability as Explainable Paths for Linking Two
States

Event structure-based similarity is subject to general or specific features. The
general features are the three perspectives: the material, behavioral, and infer-
ential (observable) perspectives, along with the Beforeness (the prerequisites)
and afterness (the implications or consequences) of the event structure. On the
other hand, the specific features are the semantic roles played by the contrib-
utors of any event, e.g., subject, object, source, purpose, manner, etc. Noting
that two of the general features, beforeness and afterness, are evident in the
event arguments, e.g., Objectt and Objectt+1, which may weaken the need for
explicit usage of Beforeness and afterness of events. Nonetheless, the paper may
use these two features for clarity and simplicity, and to highlight the notions of
prerequisites and implications (see Figure (8) B and C).

A compact representation of the atomic sentences is:

describe7→ (verb⟳ ({S 7→, S}, {O 7→
0 , O0}, {O 7→

1 , O1}, argn∈N ))

Where {S , O} are inanimate subject and object, respectively, while {S 7→ , O 7→}
are the animate versions. Assigning any of the three variants describe7→ , verb⟳,
and the verb arguments argn∈N to the State of the explainable course of actions
formalizes the explainable paths as follows:
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Fig. 8. A) the nesting if−then proposition and the attentive queryabilities. B) detailed
queryabilities. C) the various atomic types of the contributors to the even structure.

Definition 5 (the explainable path for linking two states). for State0 , Stategoal
∈ S = { describe7→, verb⟳, argn∈N}, an explainable relation State0 7−→ Stategoal
is a series of steps proceeding from the start state State0 to a goal state Stategoal.

4.2 Defining the Trainable Atomic Models

Learning an explainable path for State0 7−→ Stategoal starts from the querya-
bility of how State0 and Stategoal may be interpreted. This reformulates the
abstraction of explainable paths, see Definition (6), as a pair of s ∈ Sandq ∈ Q,
for states s with the coupled set of queries q. For each query q ∈ Q, there are
expected to be different paths of explanation, as defined in the type system for
how queries may construct the dimensions of the types.
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Although coupling states with queries enriches the explainable path and
makes them communicative and meaningful, the iterative practice of querya-
bility, e.g., querying the earlier queries, may end up with a complex space that
is harder to construct. Consequently, the paper proposes deducible explainable
paths as simple building blocks for the more complex paths. The deducible ex-
plainable paths reutilizes native atomic types as simple explainable paths, and
that may include any of the following two types:

1. both State0 ∈ S and Stategoal ∈ S are collaborators in a single event.
Meaning that the explainable path State0 7−→ Stategoal is merely an event,
a single verb.

2. both State0 ∈ S belong to one of the three variants of hierarchicality. Mean-
ing that State0 is a simplification of the more detailed Stategoal of the same
hierarchy, the explainable path State0 7−→ Stategoal is merely a hierarchy.

Any algebraic-geometric construction of explainable paths will depend on
these two simple, deducible explanations. Additionally, as a complement to
the deducible explainable paths, event-induced (context-based) concepts that are
deemed similar to State0 or Stategoal may be used for knowledge transfer their
explainable paths.

Nevertheless, for an explained link between two states to evolve into a com-
plex, detailed path, it needs a simple statement that summarizes how the two
states may be related. Based on that, the first theorem of the paper assures the
existence of a single statement linking the two states and shapes the expected
detailed explanation.

Theorem 1 (the atomic learnability). given a starting state State0 and a
goal state Stategoal, any explainable relationship L = State0 7−→ Stategoal can
be summarized using a deducible explanation as the root of the explainable path,
and the hierarchical detailing of the deducible proposition produces the finer more
detailed explanation of the relationship L.

Therefore, a simple deducible path, e.g., a verb or a hierarchy linking State0
and Stategoal, is the first step for learning the detailed explanations derived from
this simple atomic proposition. Consequently, the temporal explainable paths
linking the two states, as illustrated in Figure (7), are produced by hierarchical
detailing of the summarizing atomic proposition.

The drawback of the given definition (6)is that the explanation path γ(τ ∈
[0, 1]) is situated over a temporal domain λp∈P , where γ(τ ∈ [0, 1]) 7→ λp∈P ,
and γ(0) 7→ State0 ∈ P and γ(1) 7→ Stategoal ∈ P , which implies a concrete
temporal instance that is not invariant and not generalizable, and hence not
communicate-able between different scaled robots and natural agents. Conse-
quently, the given definition (6)of atomic explainability needs to be translated
into invariant atomic domains.

Figure (7, B)represents the paper’s proposal for translating the concrete tem-
poral domain of any explainable path into two invariant domains, the first is
called “execution domain”, which represents the temporal explainable path by
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abstract atomic propositions. The second invariant domain is called “planning
domain” and it represents the paths from the summarizing verb to the execution
space. The paper uses the hierarchically nested if − then propositions to model
these paths.

In summary, Definition (6)defines a temporal series of actions to explain
a relation between two concepts. Theorem (1) proposes a simple summarizing
proposition, a verb, that links the two entities, and accordingly, shapes the ex-
plainable relationship. Finally, two invariant execution and planning spaces are
proposed to invariantly represent an explainable model. Based on that, the fol-
lowing is a definition of the atomic neural network (AtomNN) that may equally
hold the symbolic and connectionist traits:

Definition 6 (the Atomic Neural Network (AtomNN)). the AtomNN ex-
plains a relationship between two states State0 and Stategoal based on a simple
deducible path State0 , Stategoal ∈ S = { describe7→, verb⟳, argn∈N}. The ex-
planation is defined over the following two invariant constituents of the AtomNN:

1. the planning domain: this domain resembles a discourse or a thinking process
that emits from s ∈ S and emerges towards the execution course of action
using series of queries. The queries are represented by nesting if − then
propositions.

2. the execution course of action: it prioritizes entities, concepts intuited from
s ∈ S or objects found in the surrounding environment, over a course of
action based on the processing of the planning domain.

In the next section, training the AtomNN using evolutionary optimization ap-
proaches is proposed. The optimization approaches are applied to group-inherent
equalities using the nesting if − then propositions.

4.3 Defining the Architecture and Optimization Techniques of the
Atomic Neural Network (AtomNN)

Optimization is a search over a differential space for elements that guarantee op-
timality/minimality under given differential conditions. This differentiable space
is either embedded in an ambient Euclidean space or, rather, a manifold that
is intrinsically defined. For ML models, e.g., DNNs, the differential model and
the cost functions are predefined. For the AtomNN, the model is dynamically
defined as an atomic type (diff. topological type). The AtomNN’s type is dynam-
ically structured as the nesting queries that probe different facets of the summa-
rizing verb verb⟳sumi

of the linked states, verb⟳sumi
(State0, Stategoal, argn∈N ).

The hierarchically structured queries are represented with their infinitesimal
changeable parameters, ∆i =

∑
n∈N ∂n, see Definition (1) for the differential

parameters of the seven adposition dimensions. The execution and planning
domains and their relatedness with the verb⟳sumi

summarizing proposition
are deliberated in the following subsections.
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The Planning Domain: The query’s hierarchicality is defined over weights
(weightsi) inherited from a parent query to its following nesting queries, see
Figure (7, C.1). Consequently, the planning domain of the AtomNN is defined
as a set of hierarchical differentials that are linked by the proper weights. The
hierarchical parametrization (weightsi) is the trainables of the planning domain,
and they model the extents to which the event structure’s parametrizations
verb⟳sumi

correlate with the changeability of the execution domain, which is
presented next.

The Execution Domain: The execution domain may be visualized (imagined)
as navigation paths that the surrounding environment’s objects Objenvi

may
follow. The navigation path defines the series of actions verb⟳execj (Objenvi

), where

verb⟳execj ∈ SE(3) affects any/all of the surrounding environment’s objects. This
physical manipulation of material objects may simulate, as well, the immaterial
cognitive processes. That is because the environment’s objects are represented by
atomic propositions, and according to the paper’s axiomatization, may equally
model the material and the immaterial entities.

For any object Objenvi
, there is a map, φi : State0 7→ Objenvi

(State0) and
φi : Stategoal 7→ Objenvi(Stategoal), between the two states of the explainable
path and corresponding states of the physical environment’s objects. Therefore,
the φi interprets the Objenvi

states that may be changeable over the course
of action. Meaning that, each object Objenvi in the execution domain has, at
least, to be paramerized by an intransitive verb verb⟳execj (Objenvi

), and this

verb verb⟳execj has to exist even if its label may be unknown, e.g., a latent unrec-
ognized/novel verb to the agent’s knowledgebase. For relating difffernt objects
of the execution domain, transitive verbs are used along with the environment’s
arguments, e.g., verb⟳execj (Obj 7→envi

, Obj 7→envj
, Objenvk

, Argsn∈N ), where Obj 7→envi

is an animate object, while Objenvk
is an inanimate.

Interrelating the Planning and Execution Domains: The goal of AtomNN
is to relate the observed verb-state speed of changeability of the summarization
proposition, verb⟳sumi

, (State0, Stategoal, argn∈N ), with the execution domain
states defined by the map φi for each object Objenvi of the execution domain.
The hierarchical queries’ parameters ∆i∈I link the summarization proposition
and the execution domain states. The role of the hierarchical queries is to cor-
rectly orient the conversation/thinking processes with the execution course of
action, in response to the parametrization of verb⟳sumi

. Consequently, the in-
terrelatedness between the hierarchical queryability and the execution course of
action defines the AtomNN architectures, as detailed in the next section.

AtomNN Architectures: The two factors shaping the architectures of AtomNN
are the queryability techniques and the execution path’s interrelatedness to the
hierarchical queryability parameters, and both of these factors are detailed as
follows:
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The Queryability Techniques: Queryability defines the typological model of the
AtomNN. Queries may be defined either manually, see Figure (8), or automati-
cally, by learning (training) to ask the proper question, see Figure (7, C.2 and
D). It is important to note that queryability is a main factor of commonsensical
communication, and training a developmental agent to ask the proper questions
means properly querying/defining the AtomNN, and that is foundational.

The Execution Path’s Atomic Propositions and Their Relationship with the Hi-
erarchical Queryability Layer: The proposed AtomNN is developmental. Mean-
ing that agents may learn to ask proper questions q ∈ Q as much as learn-
ing to relate, by clustering, different environmental surrounding objects over
verb⟳execj ∈ SE(3) atomic propositions. Consequently, combinatorial calcula-

tions, e.g.,
(
k
n

)
for relating k environmental objects out of n environmental ob-

jects, may be considered in early developmental phases, or else, proper clustering
algorithms should supplement the atomic agents.

For the AtomNN architecture: the execution layer is either agnostic about the
specific parameters of the queryability layer (feedforward networking), or else,
it is in a one-to-one relationship with all the parameters of ∆i and (weightsi)
of the queryability layer, see Figure (7, E)

Theorizing the AtomNN’s Optimization-ability: The numerical optimiza-
tion of AtomNN builds on two factors: the group-inherent qualities and the
descriptive comparability. Both their quantitative and qualitative aspects are
deliberated upon in terms of usability by evolutionary optimization algorithms
to train the AtomNN. The section begins by introducing the group-inherent du-
alistic calculations, along with some AtomNN-driven dualities. Then, different
approaches for assessing similarity based on comparability possibilities are dis-
cussed. After that, an evolutionary genetic programming algorithm is suggested
to benefit from the rich set of duals and comparabilities. The section closes with
the theorem of the AtomNN’s optimization-ability.

The AtomNN Group-Inherent Optimization Methods : AtomNN is symmetri-
cally represented using group structures of the if − then nesting queries or the
atomic propositions. Therefore, for any dual elements a+1, a−1, their multipli-
cation should yield the identity element a+1 · a−1 = e. This fundamental role of
symmetry should be numerically maintained by the proposed backpropagation
process. The multiplication of the partial differentials of both of the duals is
optimized to be as close as possible to the identity element e = 1. Although
it may be taken for granted that inverses multiply to identities, evolutionary
algorithms may mix different manifestations of what may be considered inverses
for the generation-based optimization enhancements.

AtomNN-Extractable Duals Although atomic propositions and hierarchical if −
then paths are symmetric, with plenty of group-based dualistic processing, this
section is interested in the duals related to the AtomNN architecture. The plan-
ning domain maintains the top-down versus the bottom-up dualities, while the
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execution course of actions maintains the duality of the directionality between
State0 7→ Stategoal path versus its inverse direction Stategoal 7→ State0. Both of
these dualities may be considered independent, and their typological and scalar
instances are optimized for the search for a better solution.

Comparability Approaches and Theorizing the AtomNN’s Optimize-ability To
complete the list of duals, the comparable duality is explicated. Although all
the mentioned dualities may be selectively used, this duality is mandatory for
the atomic optimization process. To conduct comparability, there has to be a
selected extreme ∈ {−1 , +1}, and based on that selection, comparability is
possible. One positive side of the proposed atomicity is that a verb or a state
may be equally turned into a comparable entity, see the atomic convertibility.
Comparability means that it is possible to ask a question like “what is it like?”
for a behavior or a material to compare to. There are two options to select
from to conduct comparability, the first is related to the states and behaviors
of the execution domain, from the surrounding environment, while the second
is deriving the comparability from the summarizing proposition. Merging these
two approaches is the job of the evolutionary optimizer.

Based on that, the atomic optimization-ability may be theorized as:

Theorem 2 (the atomic optimization-ability). the two planning and exe-
cution layers of the AtomNN may co-train under any of the selected dualities
di∈I ∈ D, and using either any/both of the execution-based or summarizing
proposition-based comparability. Employing a genetic programming evolutionary
optimization algorithm G, the atomic optimize-ability algorithm may be defined
as:

1. define the space of dualities that may be possibly, or impossibly, used.
2. define the comparability approach.
3. assign these parameters, along with the summarizing proposition and all the

nesting if − then propositions that either allow or disallow the queryability
space.

4. assign an acceptable error value for the computed group-inverse multiplica-
tions that the evolutionary algorithm may finish processing after reaching.

4.4 Memory Management

The event structures are open subsets of the differential atomic manifold M at
the continuous neighborhood of the point p ∈ M, where:

p ∈ verb⟳ ({S 7→, S}, {O 7→, O}, argn∈N )

Which is a model of the paramerized verb represented at p. These open subsets
represent all the verbs in natural language as smooth submanifolds that may
algebraically-geometrically be simulated using atomic propositions. These sub-
manifolds are stored as isolated islands in the atomic graph. Additionally, the
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Fig. 9. the elelemnts of the atomic graph, the nodes of the 3D algebraic-geometric
atomic simulation and the stored three versions of hierarchicality.

three variations of hierarchicality spanning the arguments of the verbs and the
series of explainable paths are stored, as well, in the atomic graph, see Figure
(9, A)

The amount of the stored verbs and the deductive hierarchies may vary
from one robot to another, depending on the computational capacity of each
robot. The long-term memory (the atomic graph) is supplemented with a mem-
ory buffer that holds the retrieved chamber geometric simulations of the verbs
and the related hierarchies. Additionally, the memory buffer holds the atomic
propositions as controlling examples that may command a swarm of atomic
agents. The same relatedness between the short/medium-term memory buffer
may supplement the multi-system interactions, e.g., vision, motor system, and
higher cognitive processes. All these sensorial manifolds may be stored as sub-
manifolds of the atomic manifold. Supplementing the database manager of the
atomic graph with a proper attentive manifold to add meaning to the key-value
search is under investigation.

4.5 Algebraizing the Atomic Model on the Tangency Space

The proposed adposition dimensions are compact Lie groups, and they don’t
define Euclidean charts of the open subsets (U, φ) that when joined smoothly (γ)
define a smooth manifold M = (U, φ, γ). But rather, the proposed dimensions
define various manifolds thatmaps to the atomic manifold on every atomic state
(atomic proposition). The adposition dimensions define a local sheaf-theoretic
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Fig. 10. A proposed Tangency space of the atomic manifold.

differential manifold (M,OM ) (the atomic manifold), where OM is a sheaf of
smooth functions representing the verb parametrization from open subsets of M
to R, the 1− form differential functions of the speed of change.

Therefore, the compact Lie groups’ dimensions may define a Lie algebraic
space for the atomic manifold, which is a needed benefit. The paper proposes an
atomic algebraic space, a Lie algebra-like space, that captures the infinitesimal
changes of the material and behavioral perspectives along with the speed of
that change as observed by the inferential perspective (see Figure ). The atomic
algebraic space may be formalized as an identity tangency space of the if− then
proposition as the following quaternion-like algebra:

Conn∈N = ± ∂

∂φa
< C|| > 1± ∂

∂φb
< C|| > i± ∂

∂φc
< C|| > j± ∂

∂φd
< C|| > k

The dimensions {1, i, j,k} serve the if − then proposition by assigning the
1 as the if condition for the insideness and outsideness SO(3) conclusions. The
other three bases {i, j,k} represent three perspectival changeability.

5 Discussion

Although the verb parametrization of its arguments may be grounded on how an
experiencer observes the speed of changeability between the two state-behavior
domains, which may have supportive evidence from the neurological analysis of
the well-studied vision system. This related changeability may be valid on the
infinitesimal scales, but not on a larger scale. For example, adding conditions
to any of the verb’s arguments may alter the expected changeability. Mean-
ing that there is a need to address the modeling complexity of sophisticated
systems, which is the proposed AtomNN. Doing so generalizes the modeling of
verbs into a general-purpose (universal) meaning-based function approximation.
Using the AtomNN implies that verbs are functions that may equally model
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Fig. 11. Exemplar algorithms for extracting material 3D proposition out of spatial
experience.

physics, mathematical structures, or any other complex phenomenon of choice,
and that is by representing the function parameters as atomic propositions for
modeling detailed explainable paths between these arguments over the AtomNN,
which comes with gamefiable 3D scenes, the geometric-algebraic simulation by
the chamber geometry, white box explainable training process, and the commu-
nicative if − then propositions.

The atomic manifold and the atomic graph may be considered as memorized
batches of the AtomNNs, which collectively define a growing differentiable atomic
graph. Additionally, the capacity to maintain structured memory implies the uni-
versal capacity in modeling memory-based biological systems, e.g., the muscular
system, community communication, and collective intelligence. For ML, defining
an explainable AtomNN that supports recursion, dynamic queryability of differ-
ent features with different explainable paths of actions may revolutionize the
field of DNN and introduce evolutionary ML models to the field. The possibility
of using the atomic model with robotics is deliberated in the next section.

Robotics and Conceptualizing the Cognitive System of Agentic Self-
Awareness The mathematical structures of SO(3), SU(2) (or quaternions
for rotations), and SE(3) (or dual-quaternions for rotations and isometric posi-
tions) are used extensively in robotic kinematics, dynamics, or pose modeling.
This implies that the atomic concept may merge seamlessly with the robotics
best-practices. Nonetheless, the proposed atomic propositions and their mem-
orized experiences over the differential atomic manifold may sustain the self-
world entangled relationship modeling. To hold a better grasp of the proposed
role atomicity may play in robotics, artificial self-awareness needs to be properly
defined.

Definition 7 ( artificial self-awareness). artificial self-awareness outlines
agents that manifest the self as an experiential knowledge of any of the following
dualistic factors f ∈ F :
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1. the boy-world duality (f0): the capacity of defining the body-configuration
hierarchy (SE(3) hierarchy of the skeletal structure) in relation to the sur-
rounding, e.g., reachability and force production.

2. the changing-getting changed duality (f1): the capacity of changing the world
vs. the possibilities of the world to affect the agent’s existence, possessions,
and goals.

3. the punished-rewarded duality (f2): the capacity to know the requirements
and consequences of the rewarding/punishing actions by criticizing the hier-
archical structure of the rewarding system’s duality.

4. the proliferation-protection duality (f3): the capacity for setting short/intermittent/long-
term goals to either achieve and pursue proliferation-related objectives against
protecting and avoiding protection-influences.

All these f ∈ F factors of artificial self-awareness may be modeled as

describe7→, (verb⟳, (I 7→, O, argsn∈N ))

While describe7→ is f ∈ F . The model queries the extents of these compara-
bilities, resulting in a proper assessment of the self-world ongoing dialogue. See
Figure (11) for embodied spatial propositional population using visual and other
sensorial-aided approximations of the seven adposition dimensions.

6 Conclusion

The atomic model is a functional approximation of meaning, according to the pa-
per’s theorization. It associates the changeability of the related material and be-
havioral states with their observed speed of change (the inferential perspective).
These infinitesimal changes are algebraically-geometrically simulated on local
states of the atomic manifold, to assess context-based similarity, and recorded
as hierarchically nested if − then propositions over the atomic graph (long-term
memory). The local processes (including the atomic reasoning) are objectively
defined, while the atomic propositions are subjectively populated. The popu-
lated atomic propositions are experienced or embodied by spatial propositions,
behavioral propositions, and inferential propositions, which are materializable
as 3D gamifiable scenes. This implies the real-world groundedness of the atomic
propositions.

The atomic model may be self-supervised learning using transparent hierar-
chical backpropagation process that openly learns hierarchical if − then propo-
sitions. The same learnability process may be used to train the attentive atomic
manifold, which substantiates commonsensical communication (learnt querya-
bility of the atomic propositions). The same approach may be used to train
sub-atomic manifolds for specialized cognizing, decision-making, setting goals,
planning, and designing tasks.

– hierarchy enhancement: constructing longer, consistent, more detailed paths
of the hierarchical if − then may need further algorithmic developments.
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– Fourier transforms for the vision system: Developing the vision system ( ≡
cognition) that is what you see is what you know, where visual cognition is
done by collative bi-directional searching between the sensorial memory and
long term memory.

– Natural language generator for the atomic concept: developing a module for
parsing atomic propositions into natural language productions to enable the
atomic agents to raise queries to LLMs pivots the road for utilizing LLMs
as tutors, which is decisive for constructing the evolving atomic agent.

– constructing a controllable, differently-scaled community of robotic agents
by structuring the highest proposition in the hierarchical type system and
testing the attentive manifold to adhere to the robot’s assigned goals.

– studying the hierarchical if − then propositions and their series of algebraic
spaces as explainable alternatives for the transformers’ COTs.
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